Modern processor optimizations such as branch prediction and out-of-order execution are crucial for performance. Recent research on transient execution attacks including Spectre and Meltdown showed, however, that exception or branch misprediction events may leave secret-dependent traces in the CPU’s microarchitectural state. This observation led to a proliferation of new Spectre and Meltdown attack variants and even more ad-hoc defenses (e.g., microcode and software patches). Unfortunately, both the industry and academia are now focusing on finding efficient defenses that mostly address only one specific variant or exploitation methodology. This is highly problematic, as the state-of-the-art provides only limited insight on residual attack surface and the completeness of the proposed defenses.